-
PaddleTS:在时间序列数据集上使用LSTM进行趋势预测
- 2022-10-27 14:29
-
字数 508
- 阅读 24
PaddleTS是一个易用的深度时序建模的Python库,它基于飞桨深度学习框架PaddlePaddle,专注业界领先的深度模型,旨在为领域专家和行业用户提供可扩展的时序建模能力和便捷易用的用户体验。PaddleTS的主要特性包括:
- 设计统一数据结构,实现对多样化时序数据的表达,支持单目标与多目标变量,支持多类型协变量
- 封装基础模型功能,如数据加载、回调设置、损失函数、训练过程控制等公共方法,帮助开发者在新模型开发过程中专注于网络结构本身
- 内置业界领先的深度学习模型,例如NBEATS、NHiTS、LSTNet、TCN、Transformer 等
- 内置经典数据转换算子,支持数据处理与转换,包括缺失值填充、异常值处理、归一化、时间相关的协变量提取等
- 内置时序数据分析算子,帮助开发者便捷实现数据探索,包括数据统计量信息及数据摘要等功能
- 支持自动超参寻优,自动、高效满足效果调优需求
在本项目中,我们将使用深度时序建模库PaddleTS,在Jena Climate时间序列数据集上基于LSTM进行温度的预报。
教程地址:https://aistudio.baidu.com/aistudio/projectdetail/4892401